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Abstract

Establishing quantum advantage is a central problem in the theory of quantum computing.
Average-case sampling problems like BosonSampling and Random Circuit Sampling have risen
to prominence, both as a theoretical tool for separating quantum and classical computation,
and as an experimental means of demonstrating quantum speedups. While the worst-case
hardness of these sampling problems was established 15 years ago, average-case hardness of
sampling remains open for all quantum advantage proposals. This is because the prior works
show that average-case hardness of sampling can be derived from certain unproven conjectures
about the hardness of computing output probabilities, such as the Permanent-of-Gaussians
Conjecture (PGC), which states that e−n logn−n−O(logn) additive-error estimates to the output
probability of most random BosonSampling experiments are #P-hard. Prior works have shown
weaker forms of average-case hardness for these problems, but these do not imply average-case
sampling statements. Proving these conjectures has since become a central question in the
theory of quantum advantage.

In this work we make substantial progress towards proving these conjectures. In particular,

we show that e−n logn−n−O(nδ) additive-error estimates to output probabilities of most random
BosonSampling experiments are #P-hard, for any constant δ > 0, exponentially improving on
prior work. In the process, we circumvent all known barrier results for proving PGC. This is
nearly the robustness needed to prove PGC—the remaining hurdle is now “merely” to show
that the O(nδ) term in the exponent can be improved to O(log n). We also obtain an analogous
result for Random Circuit Sampling.

When then show, for the first time, a hardness of average-case classical sampling result for
BosonSampling, under an anticoncentration conjecture. Specifically, we prove the impossibility
of multiplicative-error sampling from random BosonSampling experiments with probability 1−
2−Õ(N1/3) for input size N , unless the Polynomial Hierarchy collapses. This exponentially
improves upon the state-of-the-art. To do this, we introduce new proof techniques which tolerate
exponential loss in the worst-to-average-case reduction. This opens the possibility to show
hardness of average-case sampling without ever proving PGC.
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1 Introduction

What makes quantum mechanics hard to simulate classically? This has been the central question of
quantum computation since it was first proposed [Ben80, Man80, Fey82]. The need to answer this
question has been made even more urgent by recent experiments claiming to solve certain problems
much faster than by any classical computer [Aru19, Mor24, Wu21, Zho20, Zho21, Den23, YGE+24,
Mad22, DHL+24]. These claims represent the first experimental violations of the Extended Church-
Turing Thesis, the belief that all physically realizable models of computation are efficiently simulable
by randomized Turing machines, and thus deserves careful scrutiny.

While the physics of these experiments differs dramatically, from a computational standpoint
they all solve random sampling problems that have three components: (i) initialize a fiducial
starting state (such as |0n⟩), (ii) evolve by a random quantum circuit drawn from some particular
distribution, and (iii) measure to draw a sample. Seminal results due to Terhal and DiVincenzo
[TD04] and concurrent works of Aaronson and Arkhipov [AA13] and Bremner, Jozsa, and Shepherd
[BJS10] gave evidence that for these distributional sampling problems, even sub-universal quantum
computation can outperform any efficient classical algorithm in the worst case. Fascinatingly this
only assumes the non-collapse of the PH.

However, the shortcoming of these statements is that they are brittle, pertaining only to exact
sampling in the worst case. Thus the important open problem is to make these separations more
robust, so as to close the gaps between theory and experiment.

Foremost among these gaps is to prove classical hardness of sampling from an average-case
experiment, i.e., to extend the previous worst-case sampling results to prove that sampling is hard
for a randomly chosen or typical circuit from a given ensemble. This random choice of circuit is
crucial in quantum advantage experiments. For one thing, such randomness gives a hard candidate
distribution to test with a quantum device. Additionally, randomness plays an important role in
classical verification, e.g., by benchmarking tests such as Linear Cross-Entropy which make use of
specific properties of random circuits. It has also been shown that average-case hardness allows
one to derive cryptographic primitives (see e.g., [KT24]). Thus for reasons both practical and
fundamental, it behooves us to study the average-case hardness of sampling—which, in contrast to
the worst case, remains an open problem for all quantum advantage proposals.

Why should sampling from random quantum circuits be intractable for classical computers?
The first evidence for this came from Aaronson and Arkhipov, in two parts. First, they showed
a reduction from the problem of sampling from random circuits to the problem of approximately
computing output probabilities of random circuits, via Stockmeyer counting [Sto83]. Second, they
showed that computing an output probability of a random BosonSampling circuit is just as hard as
in the worst case, i.e. #P-hard, using the connection between bosons and the matrix permanent.
This was extended to random circuits on qubits [BFNV19] and subsequently improved and gener-
alized [Mov23, HHB+19]. However, these two parts do not connect with one another to establish
hardness of sampling. The key issue is that existing average-case hardness of computing proofs are
not error tolerant enough to prove hardness of sampling. That is, to show hardness of sampling we
want to show it is #P-hard to estimate output probabilities to additive error ϵ, but so far we have
only proven it is #P-hard to estimate them to additive error ϵ′ ≪ ϵ. We call this gap between ϵ
and ϵ′ the “robustness gap”, and it remains open for all quantum advantage proposals. Hardness
of average-case sampling has therefore only been established under unproven conjectures.

Consequently, the focus of this work is to close this robustness gap. While our results are broadly
applicable to many random sampling experiments, we will primarily focus on BosonSampling. The
goal is to prove the Permanent-of-Gaussians Conjecture (PGC), the statement that the follow-
ing problem, known as Gaussian Permanent Estimation, GPE±, is #P-hard: estimate the output
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probability of a random BosonSampling experiment to within additive error ±e−n logn−n−O(logn).
Aaronson and Arkhipov showed this conjecture suffices to show hardness of sampling from average-
case BosonSampling experiments [AA13].1

In the last decade, progress has been made toward proving PGC [AA13, BFLL22, Kro23]. While
Aaronson and Arkhipov’s initial work showed computing additive error estimates of e−O(n4) to the
output probability of most BosonSampling experiments is #P-hard [AB16], this error tolerance
was subsequently improved to e−6n logn−O(n) by Bouland, Fefferman, Landau, and Liu [BFLL22],
and then to e−4n logn−O(n) in unpublished work of Krovi [Kro23]. Therefore the remaining gap to
establish the hardness of BosonSampling is to improve the robustness of this result by a constant
factor in the exponent. This seems tantalizingly “close” to the target in additive terms yet ex-
ponentially far away in relative terms. We note the analogous conjectures for all other quantum
advantage experiments remain open as well, such as Random Circuit Sampling [BIS+18], despite
much progress in the area [BFNV19, Mov23, BFLL22, KMM22, ODMZ22, Kro22].

Why has it been so difficult to improve the robustness of output probability estimation and
prove the classical hardness of BosonSampling or any other quantum advantage experiment? One
of the major reasons is that there are a number of proof barriers that have been identified, indicating
that to prove hardness of sampling, new techniques are required:2

• Convexity barrier. Noted in [AA13], the basic idea is that worst-to-average-case reductions
for the permanent are based on polynomial extrapolation, following Lipton’s proof [Lip91].
Polynomial extrapolation is in general exponentially ill-conditioned, i.e. an error γ in a
degree-d polynomial p(t) near t = 0 becomes error ∼ 2dγ near t = 1. Moreover, one can show
this is necessary even for the set of polynomials corresponding to valid matrix permanents,
which is a convex set. Thus any worst-to-average case reduction for the permanent based on
polynomial extrapolation will introduce exponential relative error. A special case was referred
to as the “noise barrier” of [BFLL22].

• “Jerrum-Sinclair-Vigoda” barrier for BosonSampling. This barrier is inspired by a landmark
result of [JSV04] giving an efficient classical algorithm to estimate the permanent of a non-
negative matrix to 1/poly(n) relative error. This algorithm tells us that any technique used
to prove PGC must fundamentally make use of the fact that i.i.d. Gaussian matrices have
negative as well as positive entries. By contrast, all existing worst-to-average-case reduc-
tions for Gaussian permanents work equally well for permanents of nonnegative matrices,
and therefore cannot possibly prove PGC. In other words, to show hardness of sampling, we
will need a proof which uses a special property of matrices with negative entries that does
not hold for nonnegative matrices, such as like multiplicative hardness in the worst case.

• Depth and “Born-rule” barriers for Random Circuit Sampling. [NLPD+22] gives a classical
algorithm that approximately samples from the output distribution of a particular ensemble
of constant depth RCS experiments. On the other hand, the existing techniques for prov-
ing hardness of computing output probabilities work with respect to circuits of any depth.
Therefore, if we are to prove hardness of sampling, we need to find a proof technique that is
sensitive to circuit depth and only works to prove hardness for sufficiently deep circuits.

The “Born-rule” barrier identified by Krovi [Kro22] is that the additive error needed to prove
the hardness of average-case sampling ( 2−n) is already larger than the additive error known

1We note [AA13] also conjecture a certain “flatness” property about the output distribution known as anticon-
centration (which we also assume in this work). This allows them to convert average-case additive estimates to
relative-error estimates.
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to be hard in the worst case (2−2n, which is derived from the Born rule by squaring the
output amplitude of a Quantum Fourier Sampling circuit). How can we ever hope to prove a
worst-to-average case reduction in which the additive error in the average case is larger than
the additive error we need to obtain in the worst case?

There has also been work aiming to falsify variants of PGC. For example, Eldar and Mehra-
ban showed there is a quasipolynomial-time classical algorithm to multiplicative estimate random
Gaussian permanents if the means are non-zero but asymptotically slowly vanishing, despite being
#P-hard to compute exactly on average [EM18]. Thus the dividing line between classically easy
and classically hard is very narrow—making it yet more difficult to furnish a proof of PGC.

1.1 Our results

In this work we introduce a new suite of tools which allow us to exponentially improve on the
state-of-the-art hardness results for BosonSampling. In particular, we invent new techniques that
overcome all of the barriers described above.

Our first result makes progress towards proving the Permanent-of-Gaussians Conjecture (PGC).
We show a new worst-to-average-case reduction for computing Gaussian permanents whose additive
error tolerance exponentially improves on the state-of-the-art. Our error tolerance for the first time
matches to leading order that of the Permanent-of-Gaussians Conjecture (PGC).

Theorem 1 (Hardness of computing output probabilities). For any δ > 0, it is #P-hard under a
BPPNP reduction to approximate output probabilities of an n-photon, O(n2)-mode BosonSampling
experiment to additive error exp(−n log n−n−O(nδ)) with success probability at least 2/3, assuming
the Permanent Anticoncentration Conjecture 9.

This is nearly the additive error tolerance needed to prove PGC, e−n logn−n−O(logn). In particular,
all that remains is “merely” to improve the O(nδ) term in the exponent to O(log n). In order to
prove this result, we give a new worst-to-average-case reduction for BosonSampling which replaces
polynomial extrapolation with polynomial coefficient extraction. This allows us to use a technique
we call “dilution” to lessen the degree of the polynomial involved and hence reduce the error blowup
of the worst-to-average-case reduction.

Crucially, our proof surpasses the Jerrum-Sinclair-Vigoda barrier as it requires that the worst-
case matrix contain both positive and negative entries. This is because our worst-to-average-case
reduction derives the worst-case permanent value to within small relative error, which is only
#P-hard with mixed signs. This is an essential feature of any proof that might solve PGC, and
a feature which was missing from all prior proofs of average-case hardness for the permanent
[AA13, BFLL22, Kro23].

We also show this idea can be ported to other quantum advantage experiments, like RCS:

Corollary 2. For any δ > 0, it is #P-hard to approximate the output probabilities of n-qubit
Random Circuit Sampling experiments of Ω(log n) depth to additive error 2−n−O(nδ).

Just as with BosonSampling, this exponentially improves over prior work [BFNV19, Mov23,
BFLL22, KMM22, Kro22], and obtains hardness which is within an nδ factor of what is needed for
hardness of sampling. Applied to RCS, our techniques overcome the depth barrier by requiring an-
ticoncentration, and the Born-rule barrier by “diluting” the worst-case instance to be polynomially
smaller than the average-case instance. We prove Corollary 2 in Sec. B.

2There is also a relativization barrier to proving hardness of average-case sampling to small ℓ1 error [AC17].
However, here we focus on average-case multiplicative-error sampling (Def. 7) to which no relativization barrier
applies.
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Our second major contribution is to develop a suite of techniques that taken together allow us
to show, for the first time, a hardness of average-case sampling theorem.

Theorem 3 (Hardness of sampling). There does not exist a multiplicative-error classical sampler
(see Def. 7) from the output distribution of an n-photon, O(n2)-mode real BosonSampling experi-
ment that succeeds with probability at least 1−exp(−O(n)) over the choice of experiment, assuming
PH does not collapse and a slight generalization of Permanent Anticoncentration, Conjecture 6.

This theorem exponentially improves upon the trivial hardness of sampling statement. In
particular, if the sampling algorithm succeeds with probability 1 − 2−Õ(n3), then the algorithm
directly estimates the value of the worst case as the input size3 is Õ(n3) (see Lemma 19). We note
another exponential improvement would be required to show the desired hardness of sampling for 1−
1/poly(n) fraction of experiments. This is the first hardness result for average-case multiplicative-
error sampling. This had been open for all quantum advantage proposals, as prior hardness results
for computing output probabilities do not imply average-case sampling hardness (even for exact
sampling) due to the losses in the Stockmeyer reduction from sampling to computing.

In order to show this result, we develop a suite of new techniques that allow us to tolerate an
exponential error blowup in the worst-to-average-case reduction, overcoming the convexity barrier
of [AA13]. This is achieved by “magnifying” the worst-case permanent value to tolerate more error
in the reduction, among other improvements.

This still falls short of proving PGC—the bottleneck is that the average-case algorithm can
only compute permanents of matrices which are close in total variation distance to i.i.d. Gaussian,
which limits the error tolerance. To overcome this bottleneck, we show that if an average-case
algorithm works with sufficiently high probability, then it can also compute permanents “out of
distribution” in TV distance. This uses special properties of the Gaussian measure and also requires
proving new results in random matrix theory regarding submatrices of Haar-random orthogonals.
Our work opens up the possibility that one could prove the classical hardness of sampling, even
without proving PGC, by improving some of the parameters of these new tools. Interestingly, this
result pertains only to real BosonSampling, and extending to the complex case requires solving an
open problem in complex analysis—see Appendix E.

1.2 Proof techniques

1.2.1 What controls robustness in the standard worst-to-average-case reduction?

To explain our proof, it is helpful to briefly recall the average-case hardness proofs of [AA13] and
its subsequent improvements [BFLL22, Kro23]. The basic idea is to use polynomial extrapolation
to show the squared permanent is hard to compute on average, following Lipton [Lip91]. Suppose
we wish to compute the squared permanent of an arbitrary (worst-case) matrix W ∈ {0,±1}n×n

using only the ability to compute most Gaussian permanents R drawn from N (0, 1)n×n. We define
a univariate family of matrices interpolating between W and a single random choice of Gaussian
matrix R:

A(t) = (1 − t)R + tW

This family has three nice properties that enable the reduction: (i) |Per(A(t))|2 is a degree 2n
polynomial in t, (ii) for small values of t, A(t) is close to i.i.d. Gaussian in total variation distance,
and (iii) |Per(A(1))|2 = |Per(W )|2. This motivates a worst-to-average-case reduction whereby
one computes |Per(W )|2 by computing the average-case permanents |Per(A(t))|2 at many small

3Here n is the number of photons, and the input is an n× n matrix of reals specified to Õ(n) bits of precision.
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values of t, inferring the polynomial in t, and extrapolating it to t = 1. This shows that computing
average-case permanents, namely estimating the polynomial close to t = 0, is as hard as computing
a worst-case permanent, the polynomial at t = 1.

What controls robustness, i.e. the additive error tolerance, in this worst-to-average-case reduc-
tion? In other words, what are the largest error bars we can tolerate on our estimates to the
polynomial close to t = 0, and how do these errors accrue under polynomial extrapolation?

Polynomial extrapolation is ill-conditioned, in the sense that errors in the values of the polyno-
mial close to t = 0 blow up exponentially under extrapolation to t = 1. Formally, we can quantify
the error blowup using a discrete version of the Remez inequality that we prove in this work.4

Lemma 4 (Discrete Remez inequality). Let {xj}dj=0 ⊂ [0, 1] be a δ-separated set of points, meaning
that |xi − xj | ≥ δ for i ̸= j. Then if p is a degree-d polynomial and L ≥ 1,

|p(L)| ≤ (e2(δd)−1L)d max
0≤j≤d

|p(xj)|.

Lemma 4 has a very simple interpretation. If we take p(t) to be the difference between the true
polynomial |Per(A(t))|2 and the approximate polynomial obtained from estimates of the permanent
at {tj}, then max0≤j≤d |p(tj)| =: γ is precisely the robustness, i.e. the maximum additive error
tolerance on average-case values of the permanent. Then Lemma 4 tells us that the error blowup
|p(1)| is bounded above by γ(δd)−d, which for δ-separated points in the interval [0,∆] where 0 <
∆ < 1 is γ(1/∆)d. We will refer to ∆ as the “box size,” which is determined by the largest value
of t such that the total variation distance between A(t) and i.i.d. Gaussian is, say, 0.01. In short,
estimating a degree d polynomial to within ±γ at points t ∈ [0,∆] incurs a blowup at t = 1 of
γ(1/∆)d.

Posed in this way, we see that to increase the robustness of our worst-to-average-case reduction
we need to reduce our effective polynomial degree d or increase the box size ∆ over which we
estimate average-case values. In both the proofs of [BFLL22] and [Kro23] the main improvement
was in reducing the distance of extrapolation, while keeping the same degree of polynomial (2n
for a squared permanent). In particular in [BFLL22] the distance was reduced to ∆ = O(1/n2)
by introducing a robust version of Berkelamp-Welch over the complex numbers.5 In [Kro23] the
box size was improved to ∆ = O(1/n) by a more sophisticated calculation of the total variation
distance between A(t) and Gaussian, which saves a factor of n2n = e2n logn.

4The Remez inequality is more commonly shown in a continuous form to bound sup norms of polynomials defined
over measurable sets [Rem36] We discretize the inequality so that it is more natural for a computer science setting
and in particular our worst-to-average-case reduction.

5We note similar results for BosonSampling could be obtained by the techniques of [KMM22].

Technique Polynomial degree Box size ∆

Robust Berlekamp-Welch [BFLL22] 2n 1/n2

Tighter TVD analysis [Kro23] 2n 1/n
(This work) Square method, Lemma 13 n 1/n
(This work) Rare events lemmas 16 & 17 n 1/

√
n

(This work) Dilution via coefficient
extraction, Thm. 1

nδ ∀ const. δ > 0 1/nδ ∀ const. δ > 0

Table 1: Lemma 4 tells us that estimating a degree d polynomial to within ±γ at points t ∈ [0,∆]
incurs a blowup at t = 1 of γ(1/∆)d. Our work introduces a suite of techniques, shown here, that
decrease d and increase ∆.
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In this work, we will introduce a suite of techniques that improve both the polynomial degree
d and the “box size” ∆. We tabulate these techniques and their improvements in Table 1.

1.2.2 Coefficient extraction: a new way to encode the permanent

A natural approach to try to improve the robustness of this argument is to reduce the degree of
the polynomial involved. A simple observation is that for any ε > 0, it is #P-hard to compute
the permanent of an nε × nε matrix W as well—this is simply polynomially shrinking the input
size. Therefore a natural way to improve the robustness is to try to make W smaller, an idea we
henceforth refer to as “dilution.” Using standard polynomial extrapolation arguments, this doesn’t
yield much progress. That’s because if we set W to have small support—say with only O(nε)
nonzero entries—then Per(W ) = 0. Trivially, a matrix must have at least n non-zero entries for its
permanent to be non-zero. This lower bounds how much one could gain by such arguments using
extrapolation, and the best one can obtain by dilution is e−3n logn−O(n) robustness6—which sits
right at the convexity barrier.

To get around this obstacle, our first step is to change the worst-to-average-case reduction from
a problem about polynomial extrapolation to a problem about polynomial coefficient extraction.
We consider a one-parameter family of matrices

A(t) = R + tWdilute

and consider the case that Wdilute consists of a tiny nε-sized worst case matrix W ′ in direct sum
with the all 0’s matrix on the remaining n− nε dimensions. The key point of this construction is,
even though the value of |Per(A(1))|2 is not what we want (as A(1) = R+Wdilute), the coefficients
of the polynomial |Per(A(t))|2 do encode information about Per(W ′). In particular, the degree of
the polynomial |Per(A(t))|2 is now n2ε, and the top coefficient is |Per(W ′)|2|Per(RD)|2, where RD

is the bottom righthand minor of R of dimension n− nε (see Figure 1):

|Per(A(t))|2 = |Per(W ′)|2|Per(RD)|2t2nε
+

n2ε−1∑
ℓ=0

cℓt
ℓ

where the cℓ are some other coefficients which depend (in some complicated manner) on the entries
of R and W . To see this, simply note that any term in the permanent which picks up all possible
factors of t must take all of its entries in the first nε rows from the upper left submatrix.

With this insight in hand, we can now give a new worst-to-average-case reduction for the
permanent based on coefficient extraction: to compute |Per(W ′)|2 for some worst-case matrix
W ′ ∈ {0,±1}nε×nε

, pick many small values of t (t = O(1/nε) suffices by prior arguments) and
compute |Per(A(t))|2 using our average-case algorithm. Then ask the NP oracle to give us a
polynomial of degree 2nε which approximately matches these values. Now look at the top coefficient
of that polynomial, and divide by the value of |Per(RD)|2. Crucially, we can estimate the value of
|Per(RD)|2 to small multiplicative error, as this is another average-case instance. As multiplicative
error only adds under division, this now gives us a multiplicative estimate for |Per(W ′)|2. In other
words, our algorithm translates relative error in the average case to relative error in the worst case.

We show that the overall robustness of this algorithm is merely O(nδ) far in the exponent from
showing quantum advantage, for any δ > 0 (Theorem 1). The key point is that our polynomial now
has degree 2nε rather than 2n, and as such polynomial coefficient extraction incurs exponentially

6This is obtained by setting W to be a (tiny) arbitrary matrix of size nε × nε in direct sum with an identity on
the remaining n− nε dimensions.
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R ∼ N (0, 1)n×n
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0
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RA RB W ′

W ′ ∈ {0,±1}nε×nε

Wdilute

)∣∣∣∣∣
Figure 1: In Theorem 1, we extract the coefficient of the polynomial |Per(R + tWdilute)|, where R
is a matrix of standard normals and Wdilute has a worst-case matrix in its upper left block of size
nε × nε for any constant ε > 0, with all other matrix entries being 0. The top coefficient of this
polynomial is |PerW ′||PerRD| , where RD is the complementary minor to W ′.

less error blowup. As noted earlier, our proof crosses the Jerrum-Sinclair-Vigoda barrier as this
argument intrinsically requires that W have mixed signs.

The corollary for RCS follows by a similar dilution argument—one simply picks a worst case
random circuit which is a concatenation of an nε qubit worst case instance with an (n− nε)-sized
random instance, and applies prior worst-to-average-case reductions [Mov23, BFLL22, KMM22].
See Appendix B for details.

1.2.3 Overcoming the convexity barrier: square method and magnification lemma

While this first result exponentially improves on prior work, it is natural to ask how much closer we
are to proving the Permanent-of-Gaussians Conjecture, or more generally to establishing hardness of
sampling. The above results are obtained by diluting the worst case instance size so as to lessen the
error incurred by coefficient extraction. However, the amount of error blowup relative to the worst
case instance size has not improved. At a deeper level, despite crossing the Jerrum-Sinclair-Vigoda
barrier, the proof still does not imply hardness of sampling from Stockmeyer counting. This is
because Stockmeyer counting gives BPPNP algorithm for approximating these squared permanents
to 1/poly(n) multiplicative error, but the worst-to-average-case reduction then blows up this error
exponentially. There is no compensating factor in the reduction to “fight against” this exponential
loss. In other words, we have not yet crossed the convexity barrier.

In our next set of results, we extend the coefficient extraction technique to cross the convexity
barrier. In particular we prove a new worst-to-average-case reduction for the permanent that
can tolerate exponential losses from coefficient extraction, by developing two new techniques: the
“square method” and “magnification.”

To do this, it is helpful to take a step back to examine what happens with dense worst case
matrices with our new coefficient extraction approach. We apply two new modifications to coef-
ficient extraction which improve the robustness of the dense case from e−4n logn−O(n) [Kro23] to
e−1.5n logn−O(n). While these modifications appear simple at first glance, we will see they introduce
a term which we can use to combat the error blowup from coefficient extraction. This dense result
may at first look like a step backwards, but we will later show that this result is strong enough to
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imply a hardness of sampling theorem.
The first idea to improve robustness in the dense case, which we call the “square method,” is to

simply use the fact that |Per(A(t))|2 is the square of a polynomial to reduce the degree of coefficient
extraction. Suppose our worst-case matrix W is dense and define A(t) := R+ tW as before. While
|Per(A(t))|2 is a degree 2n polynomial, trivially we have that

|Per(A(t))|2 = p(t)2

for some degree-n polynomial p(t). In our reduction, after (approximately) computing p(t)2 at many
values of t using our average-case algorithm, we can ask the NP oracle to give us the underlying
degree n polynomial p(t) which squares to the correct value (up to the error tolerance in the average-
case computation). For real-value matrices, p(t) is real, so is uniquely defined up to a sign. Again
the highest coefficient of this polynomial (now the coefficient of tn) contains the value of Per(W )
that we wish to compute.

One might a priori guess this simple change merely reduces the effective polynomial degree
from 2n to n. Surprisingly, it has more benefit than that! In particular, suppose our average-case
algorithm computes p(t)2 to additive error ±γ at the points t near 0. How much error is induced
on p(t) itself? It turns out, p(t) is estimated to less error than γ. Suppose our NP oracle gives us
a polynomial p̃(t) = p(t) + e(t) where e(t) is some error polynomial. Then trivially we have

p(t)2 ± γ = (p(t) + e(t))2 = p(t)2 + 2p(t)e(t) + e(t)2

As our errors are vanishingly small in relative terms, the cross error term dominates, and we see

|e(t)| ≤ γ

p(t)

at points t near 0. In other words, we get to divide our error by the average-case value of the
permanent, before we propagate the error through coefficient extraction. By assuming the Perma-
nent Anticoncentration Conjecture 9, this value is

√
n! to leading order, saving us an additional

exp(n logn
2 ) beyond what we might have otherwise expected to gain in additive terms. This obser-

vation gets more interesting if we view it in relative terms. This correction factor can be seen as
ensuring the relative error on p(t) is the same (up to a constant factor of 2) as the relative error
on p(t)2, as relative error is preserved (up to constants) under taking powers.

Observe that degree reduction via the square method kept our error constant in relative terms
on our underlying polynomial. On the other hand, polynomial coefficient extraction is naturally
sensitive to error in additive terms. Our next observation is that we can use this mismatch to
reduce the coefficient extraction error blowup in relative terms, by an exponential amount. The
basic idea is to now consider a worst case matrix with two components: first, a smaller and possibly
negative-entry matrix W ′ in the upper left hand corner of size nε, in direct sum with a larger matrix
of all 1’s of dimension n− nε (see Figure 2).

Interestingly, including this large-permanent submatrix in our worst case actually improves
our robustness in the worst-to-average-case reduction! This is because for this scheme, the top
coefficient of the polynomial p(t) = Per(A(t)) is equal to Per(W ′)(n−nε)!, where this magnification
factor, (n − nε)!, comes from the value of the permanent of the bottom right hand submatrix.
Therefore, to compute Per(W ′) it suffices to estimate this top coefficient to additive error 1

3(n−nε)!
because Per(W ′) is integer-valued, so this error is removed by rounding to the nearest integer
multiple of (n − nε)!. In other words, the fact that this permanent of the all 1s submatrix is big
allows for more error tolerance in the reduction, overall improving the robustness. We show this
trick can be generalized to the more general formula:
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R ∼ N (0, 1)n×n + t
0

0
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1 1 1 1 1
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W ′ ∈ {0,±1}nε×nε

W

)∣∣∣∣∣
Figure 2: Polynomial |Per(R+tW )|, whose top coefficient is |PerW ′|(n−nε)!. This is the ensemble
under consideration in Thm. 18 where we coefficient-extract the unsquared permanent via the square
method and use worst case magnification by padding W with a matrix of 1s.

Lemma 5 (Magnification of robustness in worst-to-average-case reductions). It is #P-hard to
compute random Gaussian permanents on average to within relative error

γrel ≤
(n− nε)!

|PerR|
· ∆n · 2−O(n)

for any constant ε > 0, where R ∼ N (0, 1)n×n, and where ∆ is the “box size” as in Sec. 1.2.1,
assuming a slight generalization of Permanent Anticoncentration, Conjecture 6.

In particular this worst-to-average-case reduction now has an exponential term—namely the
ratio of the magnification factor to the average-case permanent—fighting against the exponen-
tial error blowup of polynomial coefficient extraction. For BosonSampling, this ratio is roughly
n!/

√
n! ≈ exp(n logn

2 ) which fights against a coefficient extraction error of e−n logn−O(n), resulting

in a net relative error of ≈ exp(−n logn
2 ) (to leading order) needed in the average case to show

hardness of sampling. To show hardness of sampling in the average case, this means we “merely”
need to reduce the exponential loss of coefficient extraction to a weaker exponential, or increase the
value of the worst-case matrix (now all 1s) by an exponential factor. This is not an easy problem—
these terms are interrelated, so say simply boosting the norm of the all 1s matrix simultaneously
improves the magnification-to-average-case ratio and worsens the coefficient extraction error, and
does not show hardness of sampling. However, we now finally have a term fighting against co-
efficient extraction loss. We note a similar lemma can be shown for RCS as well—in particular
for a real version of RCS with random orthogonal gates (see Section 3.3)—but does not yield any
hardness of sampling results (see Discussion 1.3).

1.2.4 Average-case hardness of sampling using random rare events lemmas

Finally, we apply this new worst-to-average-case reduction to obtain the first nontrivial hardness of
average-case sampling for BosonSampling. This uses techniques specific to BosonSampling, which
to the best of our knowledge do not carry over to other quantum advantage schemes.

To show this, we consider our new worst-to-average-case reduction, whose relative error robust-
ness is given by Lemma 5. To show an average-case hardness of sampling result via Stockmeyer,
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−3 −2 −1 0 1 2 3

PerW ′ ∈ Z

. . . . . .

−3(n− nε)! −2(n− nε)! −(n− nε)! 0 (n− nε)! 2(n− nε)! 3(n− nε)!

PerW = (n− nε)! PerW ′

. . . . . .

Figure 3: Magnification: variation between the possible values of PerW ′, which is integer-valued,
are magnified by a factor of (n − nε)! in PerW for any ε > 0 we choose. We can instantiate this
with e.g. the matrix W in Fig. 2. Since the gradations in PerW have been made so much wider,
we can sustain more error while still computing PerW precisely (see Lemma 5).

we need our relative error tolerance for #P-hardness to be inverse polynomial. Our compensating
ratio of the magnification factor to the average-case permanent is exp(n logn

2 ), so we can only afford
this much error from coefficient extraction. Unfortunately this is not enough of a loss budget to
do a standard worst-to-average-case reduction. This is because in these reductions, we compute
values of |Per(A(t))|2 for values of t which are small enough so that A(t) is distributed close in
total variation distance to Gaussian, to ensure our average-case algorithm correctly computes A(t)
with high probability. To ensure closeness of total variation distance to constant error, t must be
O(1/n)—this calculation (due to Krovi [Kro23]) is optimal. Recalling from Sec. 1.2.1 the discrete
Remez inequality, Lemma 4, this yields an error blowup of ∼ nn = en logn. There is no hope of
closing this gap with a standard total variation distance approach.

To get around this issue, our key idea is to go out of distribution. That is, what if we query
points A(t) which are far from Gaussian distributed? Clearly if our average-case algorithm could
successfully compute the permanent of these matrices, then this would improve our robustness, as
it would allow us to query points at much larger values of t, and hence reduce our error blowup.
For example, if we could successfully compute |Per(A(t))|2 for points t = O(1/

√
n), our coefficient

extraction error would be halved in the exponent, and we could show hardness of average-case
sampling! However, the issue is these matrices A(t) at large values of t are far in total variation
distance from Gaussian, so there is no trivial guarantee our algorithm works here. In fact total
variation distance arguments are useless here; the TV distance between A(t) and Gaussian is of the
form 1 − δ for a small value of δ. Even if we assume our average-case algorithm works perfectly,
a TV distance argument would only say it must work with probability at least δ on these points.
This is insufficient for our polynomial coefficient extraction techniques.

Instead, in our proof we go beyond total variation distance analysis to show that we can success-
fully query points A(t) at high values of t, so long as our average-case algorithm works with very
high probability. The basic idea is this: suppose our average-case algorithm works near perfectly,
say with probability 1 − δ over the choice of Gaussian matrix. We want to show it also works if
we query it on these points A(t) which are far from Gaussian. A basic observation is that these
A(t) are also Gaussian distributed, but with a shifted mean. We prove a simple lemma, Lemma
16, showing that rare events under one Gaussian distribution remain rare under another Gaussian,
so long as their probability is less than e−d2 where d is the distance between the means. Intuitively
this is because if an event is extremely far from the mean of a Gaussian G1 (much further than
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t

Figure 4: “Rare events” lemma 16 shows that a function that computes permanents of N (0, 1)n×n

matrices with 1 − exp(−O(n)) probability also computes permanents of N (t, 1)n×n matrices with
1 − 1/poly(n) probability for t = O(1/

√
n). That is, an algorithm that works very often over a

Gaussian distribution will also work reasonably often on a shifted Gaussian distribution. The figure
depicts that events deep in the tail of one Gaussian are still tail events for a shifted Gaussian, with
successful events colored blue and failure events colored orange.

the distance to the mean of G2) it is also far from the mean of G2 as well, and hence rare under
G2 (see Figure 4). We then apply this lemma to the event that the average-case algorithm fails
under the standard Gaussian. If this is sufficiently rare for the average case, this is also rare for
the distribution of A(t), and hence the algorithm works with high probability to compute A(t) as
well. There is a loss in this argument which forces δ to be exponentially small. However, the key
point is that if our average-case algorithm works with extremely high probability, then it can also
evaluate these points A(t) at high values of t, and hence lessen the coefficient extraction error in
our reduction.

We show this can be leveraged to show a nontrivial hardness of sampling result for an exact
(i.e. multiplicative-error) average-case sampler, following the outline above—but the proof requires
several additional technical innovations. First, an average-case sampler that works with very high
probability 1 − δ over the choice of BosonSampling experiment does not immediately imply (by
Stockmeyer counting) a BPPNP algorithm for computing Gaussian permanents with probability
1 − δ. The issue is that submatrices of Haar random orthogonal matrices are not known to be
exponentially close to Gaussian in TV distance, but rather have only been shown to be inverse
polynomially close [JM19]. Thus setting the sampler success probability to 1− δ where δ = 2−O(n)

does not automatically yield a correspondingly good algorithm for computing Gaussian permanents.
To fix this we prove yet another “rare events lemma,” Proposition 17, that allows us to transfer

our algorithm for Haar submatrices to Gaussian matrices. The proof, which may be of indepen-
dent interest, requires showing new results in random matrix theory, exploiting properties of the
probability densities and spectra of i.i.d. Gaussian matrices and submatrices of Haar orthogonals.

Second, for our algorithm to work we require Per(A(t)) to anticoncentrate. This is not guar-
anteed by the standard Permanent Anticoncentration Conjecture 9 as these matrices are out of
distribution. We instead formulate a more general conjecture that shifted mean Gaussian perma-
nents anticoncentrate:

Conjecture 6 (Anticoncentration of gently perturbed Gaussian permanents). There exists a poly-
nomial f such that for all n and ϵ > 0,

PR∼N (0,1)n×n

[
|Per(R + tW )| <

√
n!

f(n, 1/ϵ)

]
< ϵ,

for arbitrary matrix W with entries bounded by 1 and t = O( 1√
n

).

We provide numerical evidence in support of Conjecture 6 in Appendix D. Moreover, we note a
special case of this conjecture has already been proven for N (1/poly log n, 1) matrices by [JJL21],
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improving on work of Eldar and Mehraban [EM18]—and N(0, 1) matrices are the subject of stan-
dard anticoncentration—so our conjecture is in some sense interpolating between these proven
statements and conjectures to matrices with entries like N (1/

√
n, 1). See Figure 5 for a schematic.

1.3 Discussion and open problems

In this work we have exponentially improved over the best-known hardness results for BosonSam-
pling, proving a robust worst-to-average-case reduction and showing the first non-trivial average-
case multiplicative-error sampling result for (orthogonal) BosonSampling. It is natural to ask if
our techniques can be pushed further to prove PGC and show hardness of BosonSampling in the
general case. We note that further reductions in our coefficient extraction error could possibly yield
intermediate results in this direction, in particular improving our average-case success probability
of the sampler to be closer to 1 − 1/poly(n). In terms of pushing our results towards approxi-
mate average-case approximate sampling (i.e., from a distribution close in total variation distance),
an important question is if our techniques relativize, as we know non-relativizing techniques will
be required to show hardness of approximate sampling [AC17]. Interestingly Marshall, Aaronson
and Djunko [MAD24] recently introduced new techniques that do not relativize. Of course the
Permanent Anticoncentration Conjecture 9 remains open as well, and is assumed in our work.

Another natural question is if we can show any hardness of sampling for RCS similar to Theorem
3. Here the principal challenge is that the state-of-the-art of average-case hardness for RCS is
substantially farther from the goal than for BosonSampling [BFNV19, Mov23, BFLL22, KMM22,
Kro22]. While we show one can utilize the schemes of Lemma 5 for a real variant of RCS to obtain
a magnification-to-average-case ratio which fights against extrapolation loss (see Sec. 3.3), this gain
is at most 2n for RCS, while existing worst-to-average-case reductions have much larger robustness
losses. We leave this as an open problem.

We note a number of related works have studied the complexity of quantum advantage schemes
under various forms of noise in the experiment, e.g., [ABOIN96, KK14, GD18, BFLL22, AGL+23,
DNS+22, SYGY24, OLA+24, DHJB24, FGG+24, BBC+22, VNL+21] which can make the problems
asymptotically easier in certain scenarios. In contrast our work is studying the complexity of near-
noiseless variants of BosonSampling or RCS.

Finally, it remains open if our proofs can be extended from real (i.e. orthogonal) BosonSampling
to complex (i.e. unitary) BosonSampling. The part of our proof that breaks here is the statement
that, if you have evaluations of the square of a polynomial |p(t)|2, that you can infer the underlying
polynomial up to phase. While this is trivial in the real case (the phase is ±1, which is trivially
disambiguated in the proof), in the complex case it is open if this approximately defines p(t) up to
a complex phase, and this appears to be an open problem in complex analysis [Her22]. We explain
this in more detail in Appendix E.

2 Background

In this section, we record some background used throughout the paper.
In this work we will work to show hardness of exact (often called multiplicative)7 sampling of

average-case BosonSampling. In BosonSampling the input is a Haar-random m×m unitary matrix
U , describing a linear optical inteferometer on m modes, and a number n of photons. The goal

7We note that in the literature, it is common to use “exact” and “multiplicative-error” sampling synonymously,
simply because the techniques that demonstrate exact hardness typically extend to multiplicative-error hardness
automatically. We will also adopt this convention, using the two terms interchangeably.
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is to output a sample of the probability distribution obtained by passing those n photons through
the interferometer U and measuring in the photon number basis. We will work towards showing a
classical algorithm cannot perform this task on average over the choice of U . We define an exact
average-case sampler to be the following:

Definition 7 (Multiplicative-error average-case sampler). A multiplicative-error average-case sam-
pler for BosonSampling that succeeds with probability 1 − α is an efficient classical probabilistic
algorithm that, given a random m × m matrix U and error η ≥ 0, outputs a sample y from a
distribution P ′

U in time polynomial in n and 1/η such that, with probability at least 1 − α over the
choice of U ,

(1 − η)PU (y) < P ′
U (y) ≤ (1 + η)PU (y) (2.1)

for every possible output y, where PU is the output distribution of the BosonSampling experiment.

We note that this notion of sampling to small multiplicative error has been previously studied in
the literature, e.g. in [TD04, BJS10, AA13], where it has been shown that worst-case multiplicative-
error sampling is hard assuming PH does not collapse. In this work we prove a similar statement
for average-case multiplicative-error sampling.

Aaronson and Arkhipov gave a well-known reduction from classical sampling to approximate
computing of output probabilities that uses Stockmeyer’s approximate counting algorithm [Sto83],
which runs in BPPNP [AA13]. The idea of Stockmeyer’s algorithm is to estimate the probability
of any outcome by estimating the number of random strings that cause the sampler to output
that outcome. This uses that a classical randomized algorithm can be treated as a deterministic
algorithm that takes a random input. They then use this to show an efficient classical sampler
cannot exist. The basic idea is that if approximately computing output probabilities is #P-hard,
then it cannot lie in BPPNP by Toda’s theorem [Tod91]. Thus to show hardness of sampling, it
suffices to conjecture that it is hard to compute the output probabilties of experiments.

Aaronson and Arkhipov showed that the Permanent-of-Gaussians Conjecture (PGC) suffices to
prove hardness of average-case approximate sampling. PGC states that the following problem is
#P-hard:

Definition 8 (GPE±). Given as input R ∼ N (0, 1)n×n and error parameters ϵ, δ > 0, estimate
|PerR|2 to within additive error ±ϵ · n! with probability at least 1 − δ over R, in poly(n, 1/ϵ, 1/δ)
time.

This conjecture is natural in the context of BosonSampling as the output probabiltiies of these
experiments correspond to matrix permanents of submatrices of the input U . For Haar-random
unitaries of sufficient large dimension m, the submatrices are close to Gaussian, so this conjecture
is referring to the complexity of computing output probabilities of the experiment.

Aaronson and Arkhipov also assume the Permanent Anticoncentration Conjecture, which posits
a lower bound on the typical value of these permanents.

Conjecture 9 (Permanent Anticoncentration Conjecture (PACC) [AA13]). There exists a polyno-
mial f such that for all n and ϵ > 0,

PR∼N (0,1)n×n

[
|PerR| <

√
n!

f(n, 1/ϵ)

]
< ϵ.

Assuming PACC, GPE± and estimating Gaussian permanents to 1/poly(n) relative error, a
problem known as GPE×, are polynomial-time equivalent. Thus if Conjecture 9 holds, then it
suffices to show that GPE× is #P-hard.
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Finally, we note that in standard BosonSampling U is assumed to be a Haar random unitary
matrix. In this work all many of our results (all except the coefficient extraction and dilution
arguments of Theorem 1, which apply to unitaries) pertain only to the case that U is a Haar
random orthogonal matrix, whose n× n submatrices are distributed as N (0, 1)n×n, i.e. our matrix
entries are real i.i.d. standard normals. This is because the square method, developed in Section
3.2, applies to real polynomials. In Appendix E, we explain why the generalization to complex
polynomials relies on a difficult question in complex analysis. Another advantage of random m×m
orthogonal linear optical transformations is that there is a proof that n×n submatrices are close in
total variation distance to i.i.d. Gaussian matrices for m = Ω(n2) [JM19]. It is widely conjectured
in the BosonSampling literature that the same holds for random unitaries. Our focus on orthogonal
matrices means that we sidestep this conjecture altogether.

3 Techniques

3.1 Coefficient extraction

The overall scheme of past worst-to-average-case reductions for BosonSampling is an interpolation
argument inspired by Lipton’s self-reducibility of the permanent, which exploits its polynomial
structure to show that average-case instances are as hard as in the worst case [Lip91]. In particular,
by taking a convex combination in variable t of an average-case instance and a worst-case instance,
the permanent is a univariate polynomial in t. Then, by estimating values of the polynomial for
small t by the average-case algorithm, one can extrapolate to t = 1, the permanents of which are
#P-hard.

In this way, prior work has used the polynomial Per((1 − t)R + tW ) where R is a Gaussian
random matrix and W is a worst-case matrix. On the other hand, the polynomial Per(R+tW ) also
records information about Per(W ) as the highest order term is tn Per(W ). We use this observation
to provide an alternative way to perform a worst-to-average-case reduction for computation of the
permanent. We can sample the values of this polynomial up to t = O(n−1) because translation
does not change the probability distribution quickly (see Appendix A).

Our main new technical ingredient is a way to recover the top coefficient of a polynomial from
its values on an interval.

Lemma 10. Let p(x) =
∑d

j=0 pjx
j be a polynomial of degree d satisfying

sup
x∈[−ℓ,ℓ]

|p(x)| ≤ α.

Then
|pd| ≤ 2d+1ℓ−dα.

One should think of p(x) as the difference between the true permanent polynomial and the
approximate polynomial provided by the NP oracle in the reduction. The following lemma then
provides a bound on the error in the approximate polynomial’s top coefficient, which encodes the
worst-case permanent, i.e. Per(W ) above. This induces an additive error bound on the worst-case
permanent.

Proof. By rescaling the inputs, it suffices to prove the result with ℓ = 1.
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Let Tn(x) be the n-th Chebyshev polynomial. These polynomials satisfy the orthogonality
relation ∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

=


0, n ̸= m

π, n = m = 0
π
2 , n = m ̸= 0.

Since span{1, x, · · · , xn} = span{T0, T1, · · · , Tn}, it also follows that∫ 1

−1
q(x)Td(x)

dx√
1 − x2

= 0

whenever q is a polynomial of degree at most d − 1. Since the coefficient of xn in Tn is 2n, the
polynomial p− 2−dpdTd is a polynomial of degree d− 1 so that∫ 1

−1
(p(x) − 2−dpdTd(x))Td(x)

dx√
1 − x2

= 0.

Rearranging and using the orthogonality relations above, this becomes

2−d−1πpd =

∫ 1

−1
p(x)Td(x)

dx√
1 − x2

.

On the other hand, using the uniform bound on p(x) we can bound the latter integral as follows:

∣∣ ∫ 1

−1
p(x)Td(x)

dx√
1 − x2

∣∣ ≤ α

∫ 1

−1

dx√
1 − x2

= πα.

3.2 Square method

Observe that the polynomial |Per(Rt)|2 := |Per(R + tW )|2 is not merely a polynomial of degree 2n,
but rather the square of a polynomial of degree n. It is natural to then ask whether this observation
can be used to reduce the effective degree of the extrapolation to n instead of 2n.

We suppose that we have some approximate values of a square polynomial p2, and we use an
NP oracle to find some square q2 that agrees with the approximate values. Then one expects that
either p ≈ +q or p ≈ −q on these values. Notably in the case of complex polynomials, rather than
a sign ambiguity there is a phase ambiguity. The consequences of this are explored in Appendix E.
Throughout the main body of the text, we restrict our attention to real polynomials.

Before we prove Lemma 13 we record an elementary fact.

Lemma 11. Let p, q ∈ R be real numbers satisfying

|p2 − q2| < δ.

Then ||p| − |q|| < |p|−1δ.

Proof. We can assume without loss of generality that p and q are positive. Then |p + q| > |p|, so

|p− q| ≤ |p|−1|p− q||p + q| = |p|−1|p2 − q2| < |p|−1δ.
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Here we introduce the square method in the setting of coefficient extraction. To do so, we need
the following discrete Remez inequality. It is proved in Appendix B, as is the square method for
extrapolation.

Lemma 12 (Discrete Remez inequality). Let {xj}dj=0 ⊂ [−ℓ, ℓ] be a δ-separated set of points,
meaning that |xi − xj | ≥ δ for i ̸= j. Then if p is a degree-d polynomial

sup
[−ℓ,ℓ]

|p(x)| ≤ (2e2(δd)−1ℓ)d max
0≤j≤d

|p(xj)|.

Lemma 13 (The square method for coefficient extraction). Let p and q be real-valued polynomials
of degree d and let S be a δ-separated collection of points in [−ℓ, ℓ] with |S| ≥ 2d + 1. Suppose
moreover that

sup
x∈S

|p2(x) − q2(x)| ≤ γ

and infx∈S |q(x)| ≥ K. Then

||pd| − |qd|| ≤ 22d+1e2d(dδ)−dK−1γ. (3.1)

Proof of Lemma 13. By Lemma 11, we can conclude that

||p(x)| − |q(x)|| ≤ K−1|p(x)2 − q(x)2|

for all x ∈ S. In particular, for each x ∈ S there exists a sign σx ∈ {±1} such that

|p(x) − σxq(x)| ≤ K−1|p(x)2 − q(x)2|.

Let S+ = {x ∈ [−ℓ, ℓ] | σx = 1} and S− = {x ∈ [−ℓ, ℓ] | σx = −1}. At least one of these sets must
contain more than d + 1 points, so without loss of generality suppose that |S+| ≥ d + 1. Then S+

is also a δ-separated set of points, so by Lemma 12,

sup
x∈[−ℓ,ℓ]

|p(x) − q(x)| ≤ 2de2d(dδ)−dℓdK−1γ

By Lemma 10 we have
|pd − qd| ≤ 22d+1e2d(dδ)−dK−1γ.

We develop the square method for Random Circuit Sampling in Appendix B, where we use
extrapolation rather than coefficient extraction. There, we can extrapolate the values of p itself
rather than p2, and use the discrete Remez inequality to bound the extrapolation blowup induced
on p2.

3.3 Worst case magnification

Building on the square method in Sec. 3.2, in this section we develop the method of worst case
magnification.

Lemma 5 (Magnification of robustness in worst-to-average-case reductions). It is #P-hard to
compute random Gaussian permanents on average to within relative error

γrel ≤
(n− nε)!

|PerR|
· ∆n · 2−O(n)

for any constant ε > 0, where R ∼ N (0, 1)n×n, and where ∆ is the “box size” as in Sec. 1.2.1,
assuming a slight generalization of Permanent Anticoncentration, Conjecture 6.
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Remark 14 (Overcoming the convexity barrier of [AA13]). The “convexity” barrier identified in
[AA13] observes that worst-to-average-case reductions based on numerical tasks such as polyno-
mial extrapolation or coefficient extraction cannot exactly estimate a worst-case (i.e., arbitrary)
permanent given only 1/poly(n) relative error on random instances in the average-case, simply
because the reduction suffers from an exponential loss without a factor to compensate. Lemma
5 surmounts the convexity barrier by demonstrating that one can magnify the reduction’s error
tolerance by an exponentially large factor (n − nε)!/|PerR|, fighting against the exponential loss
∆n2−O(n) = O(2−n logn). Box size ∆ is explicitly calculated in Appendix A to be O(1/n).

Proof. Let us in particular take W to be a block-diagonal matrix consisting of a (small) block
W ′ ∈ {0,±1}nε×nε

for some constant ε > 0, in direct sum with a (n−nε)×(n−nε) block of the all 1s
matrix, as illustrated in Fig. 2. Observe that PerW ′ ∈ Z and that the all 1s matrix has a permanent
of (n−nε)!. Furthermore, observe that the leading-order coefficient qn = PerW = PerW ′ ·(n−nε)!.
Therefore see that the values of qn = PerW are magnified by quantity (n − nε)!, namely that qn
can take on values . . .− 2(n−nε),−(n−nε), 0, (n−nε), 2(n−nε) . . ..8 This is illustrated in Fig. 3.

This motivates the following worst-to-average-case reduction in BPPNP: ask the NP oracle for a
degree n polynomial p such that supx∈S |p2(x)−q2(x)| ≤ γ for a set S of 2n+1 evenly-spaced points
in [−1/n, 1/n]. This has an efficient certificate because by assumption, we can evaluate average-case
permanents, specifically Per(R + tW ) for t ∈ ∆ = O(1/n), and simply check that for all x ∈ S, p2

and q2 are ±γ-close. Then we may simply output the leading-order (degree n) coefficient pn of p.
The key idea is that by magnifying PerW ′ ∈ Z by a factor of (n − nε)!, it suffices for |pn|

to be ±1
3(n − nε)! close to |qn| to compute PerW ′ exactly.9 This would imply that computing

|q(0)|2 = |PerR|2 to within ±γ is #P-hard under BPPNP, i.e. that the average case is as hard as
the worst case.

To complete the proof, we upper bound γ by recalling Lemma 13 from the previous page: for
real-valued polynomials p and q of degree d and for a δ-separated collection of points S in [−ℓ, ℓ]
for which |S| ≥ 2d + 1, if

sup
x∈S

|p2(x) − q2(x)| ≤ γ

and
inf
x∈S

|q(x)| ≥ K,

then

||pd| − |qd|| ≤ 22d+1e2d(dδ)−dK−1γ, (3.2)

where pd and qd denote the leading-order coefficients of p and q.

To apply this lemma, we instantiate p, q, d, δ, S, and K as follows.

• Take polynomial q(t) = Per(R + tW ), where R ∼ N (0, 1)n×n and W is a matrix whose
permanent is #P-hard. This is a degree d = n polynomial.

8We note independent work of [BGHS25] used a related concept known as “granularity” in a quantum advantage
setting. While superficially similar, these ideas are different, as in our setting we are artificially making a worst-case
more “granular” to magnify our error tolerance, whereas in their setting the granularity naturally arises in their
average-case distribution from the integrality of representation-theoretic quantities.
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• S is a finite set of points {ti} in [−∆,∆] for which box size ∆ = O(1/n) and |S| ≥ 2n + 1.
Therefore, S is a collection of δ = O(1/n2) points, and the expression (dδ)−d in Eq. 3.2
simplifies to O(∆)−n = ∆−n · 2−O(n).

• p is a polynomial of the same degree as q, whose squared values are ±γ-close to q2 for x ∈ S.

• Conjecture 6 implies |q(x)| = |Per(R + xW )| ≥ K =
√
n!/poly(n) for all x ∈ S with proba-

bility 1 − 1/poly(n) by applying a union bound.

Using Eq. 3.2 and the bulleted substitutions above gives

||pn| − |qn|| ≤ 2(2e)2nO(∆)−n(
√
n!/poly(n))−1γ (3.3)

≤ (n− nε)!

3
. (3.4)

Re-arranging,

γ ≤ (n− nε)!

3
·

√
n!

poly(n)
·O(∆)n · (2e)−2n

2
(3.5)

= (n− nε)! ·
√
n!

poly(n)
· ∆n · 2−O(n). (3.6)

Next we ask, how well does the value of |p(0)|2 approximate that of |q(0)|2 = |PerR|2? To
answer this question, we define

γrel :=
||p(0)|2 − |q(0)|2|

|q(0)|2
=

||p(0)|2 − |PerR|2|
|PerR|2

(3.7)

≤ γ

|PerR|2
, (3.8)

recalling that γ is the maximum additive error between p2 and q2 for x ∈ [−∆,∆].
Using Eq. 3.6, we can suggestively bound γrel:

γrel ≤
γ

|PerR|2
= (n− nε)! ·

√
n!/poly(n)

|PerR|2
· ∆n · 2−O(n) (3.9)

=
(n− nε)!

|PerR|
· ∆n · 2−O(n), (3.10)

where in the final line we invoke Permanent Anticoncentration Conjecture 9.

9The astute reader will notice that in this reduction we obtain PerW exactly, rather than to within some amount
of relative error as we did in Theorem 1. Consequently, this argument does not cross the Jerrum-Sinclair-Vigoda
(JSV) barrier. However, a simple modification to the proof crosses the convexity and JSV barriers simultaneously:
Take as W a block-diagonal matrix comprising the following three matrices in direct sum: W ′ ∈ {0,±1}n

ε×nε

, the
all 0s matrix of size nε × nε, and the all 1s matrix of size (n− 2nε)× (n− 2nε). Just as in the proof of Theorem 1,
the introduction of a random minor into the leading-order coefficient of Per(R+ tW ) makes it so that the reduction
obtains a relative error approximation to PerW .
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3.4 Rare events lemma I: going out of distribution

Even with the exponential gains in error tolerance made using the square method and magnification,
they still do not yet show the hardness of average-case sampling. The limitation comes from total
variation distance analysis in the standard worst-to-average-case reduction, where we evaluate
permanents drawn from a distribution close in TVD to i.i.d. Gaussian (see Sec. 1.2.1).

Our next technical innovation is to go out of distribution. Namely, we prove what we call a “rare
events lemma,” which show that an algorithm that computes Gaussian permanents with sufficiently
high probability can also compute permanents distributed far in total variation distance from i.i.d.
Gaussian reasonably well. As these results exploit the specific structure of the Gaussian measure,
they pertain only to BosonSampling.

Lemma 15. Let S ⊂ RN be a measurable set and let

δ := (2π)−N/2

∫
S
e−∥x∥2/2 dx.

Then for all v ∈ RN ,

(2π)−N/2

∫
S
e−∥x−v∥2/2 dx ≤ e∥v∥

2/2δ1/2.

Proof. Let χS be the indicator function for the set S. We compute

(2π)−N/2

∫
S
e−∥x−v∥2/2 dx = (2π)−N/2

∫
e−∥x−v∥2/2χS(x) dx

= (2π)−N/2e−∥v∥2/2
∫

e−∥x∥2/2ev·xχS(x) dx

≤ e−∥v∥2/2
(

(2π)−N/2

∫
e−∥x∥2/2e2v·x dx

)1/2

(
(2π)−N/2

∫
e−∥x∥2/2χS(x) dx

)1/2

= e−∥v∥2/2
(
e2∥v∥

2
(2π)−N/2

∫
e−∥x−2v∥2/2 dx

)1/2

(
(2π)−N/2

∫
e−∥x∥2/2χS(x) dx

)1/2

= e∥v∥
2/2δ1/2.

(3.11)

In the inequality above we applied Cauchy-Schwartz by writing

e−∥x∥2/2ev·xχS(x) = (e−∥x∥2/4ev·x)(e−∥x∥2/4χS(x)).

Next we prove our first rare events lemma, Lemma 16, depicted in Fig. 4.

Lemma 16 (Rare events lemma I). Take A ∼ N (0, 1)n×n. Let g : Rn×n → R be a function such
that

||Per(A)|2 − g(A)| ≤ ε

holds with probability 1 − δ. Let B be an arbitrary matrix with entries |bij | ≤ 1. Then

||Per(A + tB)|2 − g(A + tB)| ≤ ε

holds with probability at least 1 −
√
e∥tB∥2 · δ, where ∥ · ∥ is the Hilbert-Schmidt norm.
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Proof. Let S ⊂ Rn×n be the set

S := {A | Rn×n | ||Per(A)|2 − g(A)| > ε}.

We apply Lemma 15 with the set S above on RN = Rn×n, where P(A ∈ S) = δ and thus the
lemma shows that P(A + tB ∈ S) ≤ e∥tB∥2/2δ1/2 as desired.

We will leverage this lemma, in combination with the second rare events lemma in the next
section, to prove the first nontrivial average-case harness of sampling theorem in Sec. 5.

3.5 Rare events lemma II: tail probabilities for orthogonal submatrices and
i.i.d. Gaussians

To prove our hardness of sampling Theorem 3, further technical innovations are required beyond
our first rare events Lemma 16. A key issue that remains is that an average-case sampler that works
with very high probability 1−δ over the choice of BosonSampling experiment does not immediately
imply (by Stockmeyer counting) a BPPNP algorithm for computing Gaussian permanents with
probability 1−δ. The issue is that submatrices of Haar random orthogonal matrices are not known
to be exponentially close to Gaussian in TV distance, but rather have only been shown to be
inverse polynomially close [JM19]. Thus setting the sampler success probability to 1 − δ where
δ = 2−O(n) does not automatically yield a correspondingly good algorithm for computing Gaussian
permanents.

To fix this, we prove yet another “rare events” lemma, Proposition 17, that allows us to transfer
our high probability algorithm for Haar submatrices to Gaussian matrices. The proof requires
some highly nontrivial random matrix theory, exploiting properties of the probability densities and
spectra of i.i.d. Gaussian matrices and submatrices of Haar orthogonals, and may be of independent
interest.

Formally, we consider two models of n×n random matrices. The first is a Gaussian matrix Xn

with independent (real) entries of variance n−1. It has a probability density given by

pG(X) = Z−1
G (n)(

∏
i∈[n]

exp(−nλi(X
TX)/2)

where λi(A) is the i-th eigenvalue of A. The factor of n comes from the normalization we apply,
and Z−1

G (n) is a normalization constant so that∫
Rn×n

pG(X) dX = 1.

The second model is that of a n×n submatrix of a Haar-random m×m orthogonal matrix. We
rescale by

√
m/n so that the individual entries have variance n−1. Then for m ≥ 2n the probability

density takes the form (see [JM19], Lemma 2.1)

pS(X) = Z−1
S (n,m)

∏
i∈[n]

(1 − nλi(X
TX)/m)(m−2n)/21λi≤m/n.

Our main result in this section is the following:

Proposition 17 (Rare events lemma II). Let E ⊂ Rn×n be a measurable subset of matrices, and
suppose that

PS(E) ≤ δ
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when E is sampled as the n× n submatrix of a Haar-random m×m orthogonal matrix, scaled by√
m/n so that each entry has variance n−1. Let 0 < α ≤ 1 and suppose that n > C and m > Cn2

for some absolute constant C. Then

PG(E) ≤ 3 exp(−nα) + 10 exp(nα/2)δ,

where PG indicates that E is sampled with independent Gaussian entries of variance n−1.

Proposition 17 has a highly nontrivial proof that we give in Appendix C, using analytic and
random matrix theory techniques.

4 Hardness of computing output probabilities, Theorem 1

Our first result makes progress towards proving the Permanent-of-Gaussians Conjecture (PGC).
Theorem 1 gives a new worst-to-average-case reduction for computing Gaussian permanents whose
additive error tolerance exponentially improves on the state-of-the-art. For the first time, our
error tolerance matches to leading order that of the Permanent-of-Gaussians Conjecture (PGC),
exp

(
−n log n− n−O(nδ)

)
compared to the goal of exp

(
−n log n− n−O(log n)

)
. All that remains

is “merely” to improve the O(nδ) term in the exponent to O(log n).

Theorem 1 (Hardness of computing output probabilities). For any δ > 0, it is #P-hard under a
BPPNP reduction to approximate output probabilities of an n-photon, O(n2)-mode BosonSampling
experiment to additive error exp(−n log n−n−O(nδ)) with success probability at least 2/3, assuming
the Permanent Anticoncentration Conjecture 9.

Proof. Take any arbitrary constants δ > ε > 0 and for ease of notation, define k := ⌊nε⌋.
Recall that the output probability of a BosonSampling experiment is

pR :=
|PerR|2

mn
=

|PerR|2

n2n
,

where R ∼ N (0, 1)n×n and the number of modes m = Θ(n2). Let A be an algorithm that given
as input R approximates pR up to additive error γ, with success probability at least 1 − η over
the choice of R for some constant η < 1/4. Additionally, consider a “worst-case” matrix Wdilute

consisting of an upper-left block W ′ ∈ {0,±1}k×k with all other entries being 0.

We will show that then there exists a BPPNPA
procedure that given as input any matrix Wdilute,

approximates |PerW ′| up to small relative error for γ = exp(−n log n− n−O(nδ)), with constant
success probability 1 − η′ for η′ slightly > η. The theorem statement follows immediately from
the #P-hardness of computing even a multiplicative approximation to the permanent of a {0,±1}
matrix.

Define the polynomial
|Per(A(t))| := |Per(A(0) + tWdilute)| , (4.1)

where A(0) ∼ N (0, 1)n×n and and Wdilute is as above. Then |Per(A(t))| is a degree k polynomial in
t whose leading coefficient is |PerW ′| |PerR′| , where R′ is the complementary minor to W ′. This
polynomial is illustrated in Fig. 1.

As computed in Lemma 20, the total variation distance between the distributions of A(t) and
A(0) is O(kt). This follows from the KL divergence between two translated Gaussians and an
application of Pinsker’s inequality.
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t = 0 t = O
(

1√
n

)
t ≥ 1

polylog(n)

(Conjectured [AA13]) (Proved [EM18, JJL21])

Our Conjecture 6 |Per(R + tW )|

Figure 5: Conjecture 6 is that permanents of the form |Per(R + tW )| are ≥ (n!/poly(n))−1 for
matrices W whose entries are bounded by 1 and for t = O( 1√

n
). This interpolates between t = 0,

i.e. PACC [AA13], and t ≥ 1
polylog(n) , where anticoncentration is proved unconditionally by [JJL21],

improving upon [EM18]. In other words, we conjecture that permanents along the thickened orange
line are at least as anticoncentrated as |PerR| at t = 0.

Consider O(k) equally spaced points {ti} in the interval [0,∆] for ∆ = O(1/k). For suitable
choice of constants, we can ensure that for each ti,

Pr

[∣∣∣∣A(A(ti)) −
|Per(A(ti))|2

n2n

∣∣∣∣ ≥ γ

]
≤ η + O(k∆) ≤ η′

for some slightly larger constant η′. Then the BPPNPA
procedure is as follows: query the NP oracle

for a degree k polynomial q such that |q(ti)|2/n2n is ±γ-close to the value obtained by A for at
least half of the points {ti}. This admits a certificate that can be efficiently verified by checking
each point {ti} for agreement between A and |q(ti)|2/n2n. Return as output |qk|/ |PerR′| .

Finally, we will use Lemma 13 to guarantee that additive error γ = exp(−n log n− n−O(nδ))
gives a good relative error estimate of |PerW ′|. Call S the subset of points {ti} at which A and
|q(ti)|2/n2n agree and observe that the points are O(1/k2)-separated. Moreover by permanent
anticoncentration, inft∈S |q(t)| ≥

√
n!/poly(n) with probability at least 1 − 1/poly(n). Recalling

that the leading-order coefficient of Eq. 4.1 is |PerW ′| |PerR′| and that |PerR′| ≥
√
n!e−O(k logn),

Lemma 13 gives that |(|PerW ′| − |qk|
|PerR′|)| ≪ |PerW ′| if γ/ |PerR|2 = e−O(k logn) = e−O(nδ).

Overall, we have a BPPNPA
procedure to multiplicatively estimate |PerW ′| if γ = exp(−n log n−

n−O(nδ)), which concludes the proof.

This proof technique carries over to Random Circuit Sampling, which we show in Appendix B.

5 Hardness of sampling, Theorem 3

The goal of this section is to prove the following theorem, which closes the robustness gap for the
first time at the expense of winnowing the failure probability to which we can prove hardness from
1/poly(n) to 1/ exp(O(n)).

Theorem 3 (Hardness of sampling). There does not exist a multiplicative-error classical sampler
(see Def. 7) from the output distribution of an n-photon, O(n2)-mode real BosonSampling experi-
ment that succeeds with probability at least 1−exp(−O(n)) over the choice of experiment, assuming
PH does not collapse and a slight generalization of Permanent Anticoncentration, Conjecture 6.

To prove Theorem 3, we will assume the following anticoncentration conjecture, illustrated in
Fig. 5. We provide numerical evidence for Conjecture 6 in Appendix D.
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Conjecture 6 (Anticoncentration of gently perturbed Gaussian permanents). There exists a poly-
nomial f such that for all n and ϵ > 0,

PR∼N (0,1)n×n

[
|Per(R + tW )| <

√
n!

f(n, 1/ϵ)

]
< ϵ,

for arbitrary matrix W with entries bounded by 1 and t = O( 1√
n

).

Intuitively, the statement is that permanents of nonzero-mean Gaussian matrices are at least
as anticoncentrated as are zero-mean Gaussians. In fact, the only setting in which there exists a
proof of anticoncentration for Gaussian permanents10 is in the case of nonzero mean, in particular
for N (t, 1)n×n matrices with t at least 1/poly log n [JJL21, EM18]. With this exception, all forms
of anticoncentration for BosonSampling remain open to date, to the authors’ knowledge.

In order to prove Theorem 3, we prove a robust worst-to-average-case reduction that synthesizes
the techniques developed earlier: coefficient extraction, the square method, magnification, and the
first rare events lemma, Lemma 16.

Theorem 18. It is #P-hard to compute |PerR|2 for R ∼ N (0, 1)n×n to 1/poly(n) relative error,
with probability at least 1 − exp(−O(n)) over the choice of R, assuming Conjecture 6.

Proof of Thm. 18. Take an arbitrary constant ε > 0 and for ease of notation, define k := ⌊nε⌋.
Let A be an algorithm that given as input R ∼ N (0, 1)n×n, approximates |PerR|2 to within

1/poly(n) relative error, with probability at least 1−exp(−O(n)) over the choice of R. Additionally,
consider a “worst-case” block-diagonal matrix W with an upper-left block W ′ ∈ {0,±1}k×k, and a
lower-right (n− k) × (n− k) block of the all 1s matrix.

We will show that then there exists a BPPNPA
procedure that given as input any such ma-

trix W, approximates |PerW ′| to within small relative error, with success probability at least 2
3 .

The theorem statement follows immediately from the #P-hardness of computing a multiplicative
approximation to the permanent of a {0,±1} matrix.

Define the polynomial

|PerA(t)| := |Per(A(0) + tW )| , (5.1)

where A(0) ∼ N (0, 1)n×n and W is as above. Then |PerA(t)| is a degree n polynomial in t whose
leading coefficient is |PerW | = (n− k)! |PerW ′| . This polynomial is illustrated in Fig. 2.

By Lemma 16, if A computes a ±γ-approximation to |PerR|2 with probability at least 1 − β,

then it computes a ±γ-approximation to |PerA(t)|2 with probability at least 1 −
√
β · et2n2 . As in

the theorem statement, we take β = exp(−O(n)) so that A has at least 1 − 1/poly(n) probability
to correctly compute |PerA(t∗)|2 where t∗ = O(1/

√
n). In particular, we will take t∗ = 4e2.5 ·

nk−1
/
√
n = 4e2.5(1 + o(1))/

√
n, and β = exp(−16e5n−O(log n)).

Consider O(n) equally spaced {ti} in the interval [0,∆] for ∆ = O(1/
√
n). By a union bound,

all the points are correct to within ±γ with probability at least 1 − 1/poly(n). Then the BPPNPA

procedure is as follows: query the NP oracle for a degree n polynomial q such that |q(ti)|2 is ±γ-
close to the value obtained by A for at least half of the points {ti}. This admits a certificate that
can be efficiently verified by checking each point {ti} for agreement between A and |q(ti)|2. Return
as output |qn|.

10Although there are proofs of so-called “weak” anticoncentration, these do not imply the stronger form of anti-
concentration necessary for the reductions made throughout the BosonSampling literature.
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Finally, Lemma 13 guarantees that |qn| is a good multiplicative estimator of |PerW | . As A
obtains a 1/poly(n) relative error approximation to |PerR|2, we have γ = n!/poly(n). Assuming
Conjecture 6, |PerA(ti)| ≥

√
n!/poly(n) on the set of points at which the NP oracle and A agree.

By construction, |PerW | = (n− k)! |PerW ′| = n! exp(−k log n + O(k log k)). Recalling from above
that t∗ = 4e2.5 · nk−1

/
√
n = 4e2.5(1 + o(1))/

√
n and substituting all these values into Eq. 3.1 of

Lemma 13, we find at last that ||pn| − |PerW | | ≤ 1
poly(n) |PerW |. Overall, we have a BPPNPA

procedure to multiplicatively estimate |PerW | , which concludes the proof.

We have now developed the machinery to prove the main result of this section, Theorem 3.
Our robust worst-to-average-case reduction in Theorem 18, combined with the second rare events
lemma, Lemma 17, allows us to prove the first nontrivial hardness of sampling result for average-
case BosonSampling.

Theorem 3 (Hardness of sampling). There does not exist a multiplicative-error classical sampler
(see Def. 7) from the output distribution of an n-photon, O(n2)-mode real BosonSampling experi-
ment that succeeds with probability at least 1−exp(−O(n)) over the choice of experiment, assuming
PH does not collapse and a slight generalization of Permanent Anticoncentration, Conjecture 6.

Proof of Theorem 3. Suppose such a sampler exists. Then, given as input a Haar-random orthog-
onal matrix, to within 1/poly(n) relative error one can compute the squared permanent of the
submatrix corresponding to a given output probability in BPPNP via Stockmeyer’s approximate
counting algorithm [Sto83]. Next we invoke Proposition 17 (proved in Appendix C) which says that
“rare event” E sampled as the n× n submatrix of an m×m Haar-random orthogonal matrix that
occurs with probability PS(E) ≤ δ, occurs with probability PG(E) ≤ δ ·exp(O(

√
n))+O(exp(−n))

if E is instead sampled from the i.i.d. Gaussian measure. Consequently PS(E) ≤ exp(−O(n))
implies

PG(E) ≤ exp(−O(n)) · exp(O(
√
n)) + O(exp(−n))

≤ exp(−O(n)).

This suffices to show that the sampler of the theorem statement likewise has 1 − exp(−O(n))
success probability to correctly compute the squared permanents a matrix drawn from the n × n
i.i.d. Gaussian matrices to within 1/poly(n) relative error. By Theorem 18, doing so is #P-hard.
Finally by Toda’s theorem, this collapses PH.

Finally, we show that the failure probability in Theorems 3 and 18 exponentially improves upon
the “trivial” algorithm that computes PerW directly. The intuition is that an algorithm to compute
Per((1 − t)R + tW ) for t very close to 1 would need failure probability at most exp(−Õ(n3)), as
it takes Õ(n3) bits to specify W, an n × n matrix of reals specified to Õ(n) bits of precision. By
comparison, Theorem 18 pertains to a sampler that fails with probability at most exp(−O(n)).

We formalize this intuition as follows: Lemma 19 shows that if matrices A and A + δB with
entries bounded by 1 are sufficiently close, i.e. for sufficiently small δ, then their permanents are
also close. As we show δ to be exp(−Õ(n3)), an algorithm that computes the permanents of all
but this tiny fraction of matrices correctly is guaranteed to approximate the permanents of the
remaining matrices, as well.

Lemma 19. Suppose that A,B are matrices with entries |aij |, |bij | ≤ 1 and δ < 1
100n

−1(n!)−1.
Then

|Per(A) − Per(A + δB)| ≤ 1.
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Proof.

|Per(A + δB) − Per(A)| = |
∑
π

[
n∏

i=1

aiπ(i) −
n∏

i=1

(aiπ(i) + δbiπ(i))]|

≤
∑
π

|
n∏

i=1

(1 + δbiπ(i)) − 1|

Each term in the above sum is bounded by (1 + δ)N − 1. Thus, as there are n! terms we compute

|Per(A + δB) − Per(A)| ≤ n!((1 + δ)N − 1)

≤ n!(| exp(Nδ) − 1| + | exp(Nδ) − (1 + δ)N |)
< 1.

The key point is that if g is an approximation to the permanent that is wrong on 1
2 of the cube

of width n−1(n!)−1) centered at some matrix A0, then it is in particular wrong on a set of volume
(n−1(n!)−1)n

2
, which is to say exp−Cn3 logn. That means there is a trivial answer to the question

only for error probabilities like exp(−Õ(n3)) rather than exp(−O(n)).
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Appendices

A How far can you shift and scale i.i.d. Gaussian matrices?

In this section, we quantify how much an i.i.d. Gaussian matrix R is perturbed under “shift” and
“scale,” namely dilation by (1− t) and translation by tW for t ∈ [0, 1] and worst-case matrix W. In
other words, for what values of t is the distribution over (1 − t)R + tW a constant total variation
distance from that of unperturbed distribution over R?

The proof proceeds by an explicit calculation of the KL divergence between two Gaussians
followed by Pinsker’s inequality. This is observed in [Kro22], with similar calculations appearing in
[JM19] and [CDM22]. For completeness, we give the proof here.

It follows immediately from the proof that distributions that are only shifted, not scaled, likewise
give O(nt) total variation distance—this is the case for coefficient extraction. For Gaussians under
shifts only, [AA13] (Lemma 48) also calculates a total variation distance of O(nt) but by a different
method.

Lemma 20 (Autocorrelation of Gaussian distribution). ∥D(1−t)R+tW −DR∥TVD ≤ O(nt).

Proof. We obtain an upper bound on total variation distance via Pinsker’s inequality:

√
2∥D(1−t)R+tW −DR∥TVD ≤

√
DKL(D(1−t)R+tW ,DR), (A.1)

where on the right we have the KL divergence. By definition Rij ∼ N (0, 1), so ((1− t)R+ tW )ij ∼
N (twij , (1 − t)2). The KL divergence between two Gaussians is

DKL(N (µ0, σ0), N (µ1, σ1)) =
(µ0 − µ1)

2 + σ2
0

2σ2
1

+ log
σ1
σ0

− 1

2
. (A.2)

So

DKL(N (twij , (1 − t)2), N (0, 1)) = O(t2), (A.3)

as wij = O(1). Note that KL divergence is not symmetric so the order above matters.
Recalling that the KL divergence is additive for independent distributions, the RHS of Eq. A.1

is √
DKL(D(1−t)R+tW ,DR) = O(nt). (A.4)

Notably, in sharp contrast to the simple bound above, the analogous bounds for the shift-and-
scale behavior of distributions in the “low-mode” or saturated limit regime of BosonSampling are
highly nontrivial and are detailed in [BBD+23].

B Corollaries for Random Circuit Sampling

In this section we describe corollaries of our techniques for Random Circuit Sampling. First, we
prove the discrete Remez inequality and give a much simpler proof of Robust Berlekamp-Welch,
introduced in [BFLL22].
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Discrete Remez Inequality and Robust Berlekamp-Welch

Powering both extrapolation and coefficient extraction is the discrete Remez inequality, proved in
this section.

Lemma 4 (Discrete Remez inequality). Let {xj}dj=0 ⊂ [0, 1] be a δ-separated set of points, meaning
that |xi − xj | ≥ δ for i ̸= j. Then if p is a degree-d polynomial and L ≥ 1,

|p(L)| ≤ (e2(δd)−1L)d max
0≤j≤d

|p(xj)|.

Proof. Using Lagrange interpolation, we can write

p(x) =
d∑

j=0

p(xj)

∏
k ̸=j(x− xk)∏
k ̸=j(xj − xk)

.

To see that this identity holds, observe that it holds at any xj and that both sides are polynomials
of degree d. Substituting x = L and observing |L− xk| ≤ L, we obtain the bound

|p(L)| ≤ Ld max
0≤j≤d

|p(xj)|max
j

∏
k ̸=j

|xj − xk|−1.

It remains to show that
max

j

∏
k ̸=j

|xj − xk|−1 ≤ e2d(δd)−d, (B.1)

which by taking logarithms is equivalent to

max
j

∑
k ̸=j

log |xj − xk|−1 ≤ 2d + d log(dδ)−1.

We use the layer-cake formula to estimate the sum, writing

∑
k ̸=j

log |xj − xk|−1 =
∑
k ̸=j

∫ log |xj−xk|−1

0
dt

=

∫ ∞

0
#{k | log |xj − xk|−1 > t} dt

=

∫ 1

0
s−1#{k | |xj − xk| < s} ds.

The second step follows from Fubini’s theorem, and the last step from the change of variables
s = e−t. The δ-separated hypothesis on xj implies

#{k | |xj − xk| < s} ≤


0, s < δ

2δ−1s, δ ≤ s ≤ dδ

d, s > dδ.

Therefore ∑
k ̸=j

log |xj − xk|−1 ≤
∫ dδ

δ
2δ−1 ds +

∫ 1

dδ
ds−1 ds = 2d + d log(dδ)−1,

which concludes our proof of (B.1).
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As a consequence of Lemma 4, we obtain a simpler proof of Robust Berlekamp-Welch, which
was initially developed in [BFLL22].

Theorem 21 (Robust Berlekamp-Welch bound). Let D = {(xi, yi)}Mi=1 be a set of 2(d+ 1) < M <
100d data points with xi evenly spaced on the interval [0,∆]. Suppose that P1 and P2 are degree-d
polynomials which satisfy

#{j | |Pa(xj) − yj | ≥ δ} < M/4 (B.2)

for a = 1, 2. Then
|P1(1) − P2(1)| ≤ (C∆−1)dδ. (B.3)

Proof. The set on which P1 and P2 agree has at least M/2 > (d + 1) points. These points are
O(∆d−1)-separated. The conclusion follows from an application of Lemma 4.

The key observation is that Theorem 21 can be turned into an algorithm in BPPNP that carries
out extrapolation. In the reduction, P2 is supplied by an NP oracle, where Eq. B.2 is the efficiently-
verifiable predicate. Thus the algorithmic interpretation of Theorem 21 is that in PNP, one can
estimate at t = 1 a polynomial given faraway points close to t = 0, even when a constant fraction
of the points are utterly corrupted. This is admissible because our use of Stockmeyer approximate
counting already necessitates a BPPNP reduction. The point is that because the worst-case is
#P-hard, a reduction at any finite level of PH induces its collapse.

Square method for extrapolation

Lemma 22 (The square method for extrapolation). Let p and q be real-valued polynomials of degree
d, and let S ⊂ [0, 1] be a δ-separated set of points with |S| = 2d + 1. Then,

|p2(1) − q2(1)| ≤ E|p(1)| + E2 (B.4)

where

E = (e2(dδ)−1)d max
x∈S

|p2(x) − q2(x)|
|p(x)|

.

Proof of Lemma 22. By Lemma 11, we can conclude that

||p(x)| − |q(x)|| ≤ |p(x)|−1|p(x)2 − q(x)2|

for each data point j. In particular, for each x ∈ S there exists a sign σx ∈ {±1} such that

|p(x) − σxq(x)| ≤ |p(x)|−1|p(x)2 − q(x)2|.

Let S+ = {x | σx = 1} and S− = {x | σx = −1}. Since |S+ ∪ S−| = 2d + 1, it follows that either
|S+| ≥ d + 1 or |S−| ≥ d + 1. Without loss of generality suppose that |S+| ≥ d + 1. Then S+ is
also a δ-separated set of points, so by Lemma 4,

|p(1) − q(1)| ≤ (e2dδ)−d max
x∈S+

|p2(x) − q2(x)|
|p(x)|

≤ E

To obtain (B.4) we use the triangle inequality to bound |q(1)| ≤ |p(1)| + |p(1) − q(1)| and write

|p2(1) − q2(1)| = |p(1) − q(1)||p(1) + q(1)| ≤ |p(1) − q(1)|(|p(1)| + |p(1) − q(1)|).
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Dilution for Random Circuit Sampling: Corollary 2

In this section, we show that the argument for Thm. 1 can be adapted to Random Circuit Sampling,
as well. The proof follows readily from the dilution argument illustrated in Fig. 6 combined with
well-established machinery from [Mov19, KMM22, BFLL22, Mov23].

Corollary 2. For any δ > 0, it is #P-hard to approximate the output probabilities of n-qubit
Random Circuit Sampling experiments of Ω(log n) depth to additive error 2−n−O(nδ).

Proof sketch. As in the proof of Theorem 1, we note that output probabilities of a circuit have a
polynomial structure, in this case coming from the Feynman path integral. Depicted in Fig. 1, we
take a random circuit supported on n qubits, calling the circuit supported on the first nε qubits
RA and on the latter n− nε qubits RB.

Then, we perturb only the gates supported on the first nε qubits, circuit RA, to a worst-case cir-
cuit WA by the Cayley transform parametrized by θ [Mov19, Mov23]. Notably, two conditions hold:
output probabilities of the θ-perturbed random circuit family are a low-degree rational function in
θ, in particular with degree (O(nε), O(nε)), and moreover the total variation distance between the
initial and θ-perturbed distributions is O(kθ).

By Theorem 21, an algorithm A to compute output probabilities from the unperturbed circuit

up to additive error γ can be in BPPNPA
converted into Robust Berlekamp-Welch extrapolation

that computes output probabilities of any circuit, e.g., a Fourier Sampling circuit, up to additive
error γ · 2n+O(nδ). This is #P-hard, completing the proof.

Remark 23 (Depth barrier). Referring to Lemma 22, our extrapolation bounds make use of lower
bounds on the polynomial close to θ = 0. In this way we invoke anticoncentration, proved for
random circuits at log depth [DHB20]. In doing so, Corollary 2 is depth-sensitive, i.e. requires
sufficiently deep circuits, and thus overcomes the depth barrier described in the Introduction.

Remark 24 (Born-rule barrier). Recall the “Born-rule” barrier identified by Krovi [Kro22], namely
that the additive error needed to prove the hardness of average-case sampling ( 2−n) is already
larger than the additive error known to be hard in the worst case (2−2n, which is derived from
the Born rule by squaring the output amplitude of a Quantum Fourier Sampling circuit). Without
dilution, it is seemingly impossible to prove a worst-to-average case reduction in which the additive
error in the average case is larger than the additive error we need to obtain in the worst case.
Corollary 2 overcomes the Born-rule barrier by simply “diluting” the worst-case instance to be
polynomially smaller than the average-case instance.

C Rare events for orthogonal submatrices and i.i.d. Gaussians

We consider two models of n × n random matrices. The first is a Gaussian matrix Xn with
independent (real) entries of variance n−1. It has a probability density given by

pG(X) = Z−1
G (n)(

∏
i∈[n]

exp(−nλi(X
TX)/2)

where λi(A) is the i-th eigenvalue of A. The factor of n comes from the normalization we apply,
and Z−1

G (n) is a normalization constant so that∫
Rn×n

pG(X) dX = 1.
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Figure 6: In Corollary 2, we take a random circuit supported on n qubits and perturb only the
circuit supported on the first nε qubits, RA, to a worst-case circuit WA by the Cayley transform.
The “bridge” gates on the interface between RA and RB transform into Identity gates so that the
output probability on the righthand circuit factorizes.

The second model is that of a n×n submatrix of a Haar-random m×m orthogonal matrix. We
rescale by

√
m/n so that the individual entries have variance n−1. Then for m ≥ 2n the probability

density takes the form (see [JM19], Lemma 2.1)

pS(X) = Z−1
S (n,m)

∏
i∈[n]

(1 − nλi(X
TX)/m)(m−2n)/21λi≤m/n.

Our main result in this section is the following:

Proposition 17 (Rare events lemma II). Let E ⊂ Rn×n be a measurable subset of matrices, and
suppose that

PS(E) ≤ δ

when E is sampled as the n× n submatrix of a Haar-random m×m orthogonal matrix, scaled by√
m/n so that each entry has variance n−1. Let 0 < α ≤ 1 and suppose that n > C and m > Cn2

for some absolute constant C. Then

PG(E) ≤ 3 exp(−nα) + 10 exp(nα/2)δ,

where PG indicates that E is sampled with independent Gaussian entries of variance n−1.

The proposition will follow from three main facts. The first relates the normalization constants
cG to cS :

Lemma 25. There exists a constant C such that for n > C and m > Cn2, the normalization
constants ZG(n) and ZS(n,m) satisfy

1

10
≤ ZG(n)/ZS(n,m) ≤ 10.

The second fact relates the densities pG and pS directly, up to the normalization cG/cS :
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Lemma 26. Suppose that λmax(XTX) ≤ K ≤ m
10n . Then

| log(
pG(X)

pS(X)
) − log(ZS(n,m)/ZG(n)| ≤ K2 n

3

m2
+ K3 n

4

m3
+

n2

m
| tr[(XTX)2 − 2XTX]|.

The third fact we need is that the right hand side above is often small for X sampled from the
independent Gaussian distribution.

Lemma 27. let X be a Gaussian n× n matrix with independent entries of variance n−1. Then:

P(λmax(XTX) > 3 + t) ≤ exp(−nt2/2) (C.1)

Moreover,
P(| tr[(XTX)2 − 2XTX]| > 100

√
t) ≤ exp(−t) + exp(−n) (C.2)

Before we proceed to the proofs of these lemmas we show how to combine them to deduce
Proposition 17.

Proof of Proposition 17 using Lemmas 25-27. We write

E ⊂ (E ∩ Ωgood) ∪ Ωbad,

where we set Ωbad = Ωc
good and Ωgood is the set of matrices satisfying

Ωgood := {λmax(X) ≤ 4} ∩ {tr[(XTX)2 − 2XTX] ≤ 100nα/2}.

Then by Lemma 27 and the fact that α ≤ 1 we have

PG(Ωbad) ≤ 2 exp(−n) + exp(−nα) ≤ 3 exp(−nα),

so using a union bound we have

PG(E) ≤ PG(E ∩ Ωgood) + 3 exp(−nα).

Next we estimate PG(E ∩ Ωgood) by reweighting the probability measure:

PG(E ∩ Ωgood) =

∫
E∩Ωgood

pG(X) dX

=

∫
E∩Ωgood

pG(X)

pS(X)
pS(X) dX.

For X ∈ Ωgood we have by Lemma 26 the inequality

pG(X)

pS(X)
≤ cG

cS
exp(16

n3

m2
+ 64

n4

m3
+ 100

n2

m
nα/2).

By Lemma 25 we have cG
cS

≤ 10, and then using that m > Cn2 and n > C is large we have that for
sufficiently large n,

pG(X)

pS(X)
≤ 10 exp(nα/2).

Therefore we can conclude

PG(E ∩ Ωgood) ≤ 10 exp(nα/2)

∫
E
pS(X) dX ≤ 10 exp(nα/2)δ,

as desired.

We now go through the proofs of the lemmas, in reverse order.
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Proof of Lemma 27

The key ingredient in the proof of Lemma 27 is the following classical concentration inequality.

Lemma 28. Let f : Rd → R be a Lipschitz-continuous function, that is one satisfying

|f(x) − f(y)| ≤ L∥x− y∥,

where the norm used above is the Euclidean one. Let X be a vector of independent standard
Gaussians, and set f̄ = E f(X). Then

P(|f(X) −E f(X)| ≥ t) ≤ exp(−t2/(2L2))

Now we can prove the proposition.

Proof of Lemma 27 using Lemma 28. First we observe that λmax(XTX) satisfies√
λmax(XTX) = sup

∥u∥=∥v∥=1
uTXv.

We can think of
√
λmax(XTX) as a function of n2 independent Gaussian inputs, and the Lipschitz

constant is equal to the maximum Lipschitz constant of the functions uTXv. This latter Lipschitz
constant is given by ( n∑

i,j=1

n−1|uivj |2
)1/2

= n−1/2∥u∥∥v∥ = n−1/2.

Thus L ≤ n−1/2. Moreover for large enough n, Eλmax(XTX) ≤ 3 (in fact, limn→∞Eλmax(XTX) =
2). Therefore

P(
√
λmax(XTX) ≥ 3 + t) ≤ exp(−nt2/2).

This concludes the proof of (C.1).
Now we prove (C.2). Let g(t) be the function

g(t) =


t2 − 2t, |t| ≤ 4

8, t > 4

24, t < −4.

Then for X such that λmax(XTX) ≤ 4 (which by the above occurs with probability at least
1 − exp(−n/2),

ϕ(X) = tr((XTX)2 − 2(XTX)) = tr(g(XTX)) =
∑
i

g(λi(X
TX)).

Now let Eij be the matrix with a 1 in the (i, j) coordinate and 0’s elsewhere. Then the Lipschitz
constant of ϕ(X) (as a function of the independent Gaussian matrix entries) is

L = n−1/2
(∑

ij

( d

dt
ϕ(X + tEij)|t=0

)2)1/2

But the derivative in this trace is given by

d

dt
ϕ(X + tEij)|t=0 = tr(g′(XTX)(XTEij + EjiX)) = (g′(XTX)XT )ij + (Xg′(XTX))ji.
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Thus
L ≤ 2n−1/2(tr[XTXg′(XTX)2])1/2.

Since g′ itself is bounded by 24, this means ∥g′(XTX)∥ ≤ 24, so

L ≤ 48n−1/2(tr[XTX])1/2.

If λmax(XTX) ≤ 4, then tr[XTX] ≤ 4n, so this becomes

L ≤ 96 ≤ 100.

And now (C.2) follows.

Proof of Lemma 26

The proof of Lemma 26 is a relatively simple calculation.
For X satisfying λmax(X) ≤ m/n,

log(
pG(X)

pS(X)
) = log(ZS(n,m)/ZG(n)) +

1

2

∑
i∈[n]

[(2n−m) log(1 − nλi/m) − nλi]

To simplify this further we use the Taylor approximation

| log(1 + t) − (t− 1

2
t2)| ≤ |t|3,

valid for |t| ≤ 1
10 , which holds for t = nλi/m when λi ≤ 2 and m > 20n. Letting E := | log(pG(X)

pS(X) )−
log(cG/cS)|, we can rearrange and cancel terms to obtain

|E| =
∣∣∣ ∑
i∈[n]

[(2n−m)(−nλi/m− n2λ2
i /m

2 + O(n3λ3
i /m

3)) − nλi]
∣∣∣

≤
∣∣∣ ∑
i∈[n]

n2λ2
i /m− 2n2λi/m

∣∣∣ +
∑
i∈[n]

|2n2λ2
i /m

2| +
∑
i∈[n]

|n3λ3
i /m

3|

≤ n2

m
| tr[(XTX)2 − 2XTX]| + 8

n3

m2
+ 8

n4

m3

≤
√
n + O(1).

To get to the last line we used that
∑

i∈[n] λ
k
i = tr[(XTX)k] and the following inequalities which

hold for “good” matrices:

λi ≤ 2

| tr[(XTX)2 − 2XTX]| ≤
√
n.

Proof of Lemma 25

First we establish some facts about submatrices of Haar-random orthogonal matrices. First we
need a calculation for the moments of such matrices.

Lemma 29 (Lemma 2.5 of Jiang-Ma). Letting X be an n× n submatrix of an m×m orthogonal
matrix, scaled so that the entries have variance n−1, we have

E tr[XTX] = n

E tr[(XTX)2] =
m

m + 2
[2n + 1 − (n− 1)2

(m− 1)
].
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We combine this with the following concentration inequality on the orthogonal group. The
inequality below follows from the fact that the orthogonal group SO(m) has Ricci curvature m−2

4
which by the Bakry-Emery argument (see [BGL+14], Theorem 2.1) shows that it has a log-Sobolev
inequality with constant 4

m−2 , and therefore Gaussian concentration for Lipschitz functions.

Lemma 30. Let f : Rm2 → R be a function taking as input m×m matrices, and suppose that f
has Lipschitz constant L, that is

|f(X) − f(Y )| ≤ L∥X − Y ∥,

where the norm used is the Hilbert-Schmidt norm, ∥X∥2 =
∑

ij |xij |2 = tr[XTX]. Let f̄ = E f(X)
where the expectation is over X ∈ SO(m) sampled uniformly from the Haar measure. Then also
over this probability measure we have

P(|f − f̄ | ≥ t) ≤ exp(−mt2/(8L2)).

Next we need to know some facts about submatrices of typical Haar-random matrices.

Lemma 31. Let X =
√
m/nY where Y is an n×n submatrix of a Haar-random orthogonal m×m

matrix. There exist n0 such that for n > n0 and m > n2, with probability at least 1
2 , X satisfies

both λmax(XTX) ≤ 5 and tr[(XTX)2 − 2XTX] ≤ 100.

Proof. We use the fact that, for any sequence m(n) satisfying m(n) ≥ n2, we have

lim
n→∞

Eλmax(XTX)2 = 4.

In particular for some n0 > 0 we have for any n > n0 and m > n2 the inequality

Eλmax(XTX)2 ≤ 5.

Thus we conclude using Markov’s inequality that

P(λmax(XTX) ≥ 5) ≤ 1

25
E (λmax(XTX)2) ≤ 1

5
,

Next, by Lemma 29 we have

|E tr[(XTX)2 − 2XTX]| ≤ 1.

Now let g(t) be the same truncated version of t2 − 2t as in the proof of Lemma 27. The same
argument as in there, combined with the concentration inequality of Lemma 30 implies that

P(| tr[(XTX)2 − 2XTX]| ≥ 100) ≤ 1

4
.

Combining these with a union bound proves the result.

We are finally ready to prove Lemma 25, and thus conclude the proof of Proposition 17.

Proof of Lemma 25. Let A ⊂ Rn×n be the set of matrices that are “typical” both for the Gaussian
distribution and as submatrices of orthogonal matrices:

A := {λmax(XTX) ≤ 5} ∩ {| tr[(XTX)2 − 2XTX]| ≤ 100}.
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Then by Lemma 31 and also Lemma 27 we have

1

2
≤ PG(A) ≤ 1

and also
1

2
≤ PS(A) ≤ 1.

In particular,
1

2
≤ PG(A)

PS(A)
≤ 2.

Moreover, by Lemma 26 we have for X ∈ A that

| log(pG(X)/pS(X)) − log(cG/cS)| ≤ 25
n3

m2
+ 125

n4

m3
+ 100

n2

m
≤ 1

for m > 101n2 and n sufficiently large. Therefore

PG(A)

PS(A)
=

∫
A pG(X) dX∫
A pS(X) dX

=

∫
A

pG(X)
pS(X)pS(X) dX∫
A pS(X) dX

=

∫
A

pG(X)
pS(X)pS(X) dX∫
A pS(X) dX

=
cG
cS

sup
X∈A

cSpG(X)

cGpS(X)
≤ e

cG
cS

.

Thus cG
cS

≥ 1
2e . The argument also works to show that cS

cG
≥ 1

2e , so the proof follows from 2e <
10.

D Numerical evidence for Conjecture 6

In this section, we provide brief numerical evidence for Conjecture 6:

Conjecture 6 (Anticoncentration of gently perturbed Gaussian permanents). There exists a poly-
nomial f such that for all n and ϵ > 0,

PR∼N (0,1)n×n

[
|Per(R + tW )| <

√
n!

f(n, 1/ϵ)

]
< ϵ,

for arbitrary matrix W with entries bounded by 1 and t = O( 1√
n

).

In particular, we compute permanents of several ensembles of Gaussian matrices with varying
means, and plot their distribution. We observe similar distributions on the minimum non-zero
permanent observed for all means tested.
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Figure 7: Box plots for the distribution of |Per(R + tW )| of the form depicted in Fig. 2 for n = 10
and k = nε = 5. For five equally spaced values of t ∈ [0, 1/

√
n], we randomly generate 30 such

R and W . Notably, the box plots show remarkably little variation for increasing t in the relevant
range, and in particular the lower bound for t = 0 holds for shifted t, as conjectured.

E Square method for complex polynomials

In this section we quickly discuss the difficulties involved in proving variants of the square trick
(Lemma 13 in the context of coefficient extraction, and Lemma 22 in the context of extrapolation)
in the case that p and q are complex valued polynomials. This is relevant if one wants to obtain
hardness results for BosonSampling with a unitary random matrices (as opposed to orthogonal).

The complex case is significantly different from the real case because now one must recover a
complex phase from the unit circle in C rather than simply a sign ±1 (for which there are only two
possibilities – this is used in Lemma 13 for example).

This can be seen in the following example. Let q(t) = 1 be the constant polynomial, and let

pd(t) =

d∑
j=0

(it/2)j

j!

be the Taylor truncation of order d of the exponential eit/2. Then by the Taylor remainder formula,

|pd(t) − eit/2| ≤ 2−d

d!

on the interval [−1, 1]. Therefore ||pd| − 1| ≤ 2−d(d!)−1 but also for any phase eiθ there exists
t ∈ [0, 1] such that |pd − eiθ| > 1/4.

This example shows that there is no complex analogue of Lemmas 13 or 22 if we only compare
the values of p and q on some real interval. We can however perform an extrapolation by considering
the values of the polynomial on the unit disk on the complex plane instead of the real interval [−1, 1].
To see that this has a hope of succeeding one can see that

sup
z∈B1

||pd(z)| − 1| ≳ 1.
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We are unfortunately unable to provide a complete proof of a variant of Lemma 13 in the
complex case. What we are missing is an interesting and seemingly difficult question in complex
analysis [Her22].

Conjecture 32. For any complex-analytic functions f and g on the unit disk, there exists ω ∈ C,
|ω| = 1 such that |ω| = 1 such that

max
|z|≤ 1

4

|f(z) − ωg(z)| ≤ C max
|z|≤1

||f(z)| − |g(z)||.

Above Dr is the complex disk of radius r centered at the origin.

Note that the restriction to D1/4 (or at least some Dr with r < 1) is necessary for the conjecture

to hold. For example if f = zn and g = zn+1 then for any ω = eiϕ, ϕ ∈ [0, 2π] one has

max
|z|≤1

|zn − ωzn+1| ≥ max
θ∈[0,2π]

|einθ − eiϕei(n+1)θ| = max
θ∈[0,2π]

|eiθ − eiϕ| = 2.

On the other hand
max
|z|≤1

||z|n − |z|n+1| ≤ max
0≤r≤1

rn(1 − r) ≤ Cn−1.

We are not claiming that Conjecture 32 is sufficient to transfer our results to Haar-random
unitary matrices, only that it seems to be necessary to overcome this obstacle before one can
transfer our techniques to that setting.
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